Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610940

RESUMO

Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [177Lu]Lu-PSMA-TB-01. A high and specific uptake of [177Lu]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 ± 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [177Lu]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [177Lu]Lu-PSMA-TB-01 (16 ± 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 ± 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 ± 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.

2.
Curr Pharm Des ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482628

RESUMO

BACKGROUND: Transdermal delivery of highly lipophilic molecules is challenging due to the strong barrier function of the skin. Vesicles with penetration enhancers are safe and efficient systems that could improve the transdermal delivery of non-psychoactive cannabinoids such as cannabidiol and desoxy-cannabidiol. In the last decades, research interest in desoxy-cannabidiol as a potent drug with anti-nociceptive properties has risen. Still, its scarce market availability poses a limit for both research and clinical applications. Therefore, it is necessary to improve the synthesis to produce sufficient amounts of desoxy-cannabidiol. Moreover, also the formulation aspects for this drug are challenging and require to be addressed to meet an efficient delivery to the patients. OBJECTIVE: This work aimed to develop innovative phospholipid-based vesicles with propylene glycol (PG), oleic acid (OA), or limonene as edge activators, for the transdermal delivery of highly lipophilic drugs such as non-psychoactive cannabinoids. In particular, desoxy-cannabidiol was selected thanks to its anti-nociceptive activity, and its synthesis was improved enhancing the stereoselectivity of its synthon's production. METHODS: Desoxy-cannabidiol was synthesized by Lewis acid-mediated condensation of p-mentha-2,8-dien- 1-ol and m-pentylphenol, improving the stereoselectivity of the first synthon's production. Transethosomes containing 20-50% w/w PG, 0.4-0.8% w/w OA, or 0.1-1% w/w limonene were optimized and loaded with cannabidiol or desoxy-cannabidiol (0.07-0.8% w/w, 0.6-7.0 mg/mL). Ex-vivo studies were performed to assess both the skin permeation and accumulation of the cannabinoids, as well as the penetration depth of fluorescein- loaded systems used as models. RESULTS: An enantioselective bromination was added to the pathway, thus raising the production yield of pmentha- 2,8-dien-1-ol to 81% against 35%, and the overall yield of desoxy-cannabidiol synthesis from 12% to 48%. Optimized transethosomes containing 0.6 mg/mL cannabinoids were prepared with 1:10 PG:lipid weight ratio, 0.54 OA:lipid molar ratio, and 0.3 limonene:lipid molar ratio, showing good nanometric size (208 ± 20.8 nm - 321 ± 26.3 nm) and entrapment efficiency (> 80%). Ex-vivo tests showed both improved skin permeation rates of cannabinoids (up to 21.32 ± 4.27 µg/cm2 cannabidiol), and skin penetration (depth of fluorescein up to 240 µm, with PG). CONCLUSION: Desoxy-cannabidiol was successfully produced at high yields, and formulated into transethosomes optimized for transdermal delivery. Loaded vesicles showed improved skin penetration of desoxy-cannabidiol, cannabidiol and a lipophilic probe. These results suggest the potential of these carriers for the transdermal delivery of highly lipophilic drugs.

3.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541733

RESUMO

The aim of the present study consists of the evaluation of the biodistribution of a novel 68Ga-labeled radiopharmaceutical, [68Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. The 68Ga-labeled radiopharmaceutical was designed to specifically bind to the cholecystokinin receptor (CCK2R). This receptor, naturally present in healthy tissues such as the stomach, is a biomarker for numerous tumors when overexpressed. In this experiment, Balb/c nude mice were xenografted with a human epidermoid carcinoma A431 cell line (A431 WT) and overexpressing CCK2R (A431 CCK2R+), while controls received a wild-type cell line. PET images were processed, segmented after atlas-based co-registration and, consequently, 112 radiomics features were extracted for each investigated organ / tissue. To confirm the histopathology at the tissue level and correlate it with the degree of PET uptake, the studies were supported by digital pathology. As a result of the analyses, the differences in radiomics features in different body districts confirmed the correct targeting of the radiopharmaceutical. In preclinical imaging, the methodology confirms the importance of a decision-support system based on artificial intelligence algorithms for the assessment of radiopharmaceutical biodistribution.

4.
Exp Hematol ; 129: 104128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939833

RESUMO

During the recent coronavirus disease 2019 (COVID-19) pandemic several patients with ß-thalassemia have been infected by severe acute respiratory syndrome coronavirus (SARS-CoV-2), and most patients were vaccinated against SARS-CoV-2. Recent studies demonstrate an impact of SARS-CoV-2 infection on the hematopoietic system. The main objective of this study was to verify the effects of exposure of erythroid precursor cells (ErPCs) from patients with ß-thalassemia to SARS-CoV-2 spike protein (S-protein) and the BNT162b2 vaccine. Erythropoietin (EPO)-cultured ErPCs have been either untreated or treated with S-protein or BNT162b2 vaccine. The employed ErPCs were from a ß-thalassemia cellular Biobank developed before the COVID-19 pandemic. The genotypes were ß+-IVSI-110/ß+-IVSI-110 (one patient),  ß039/ß+-IVSI-110 (3 patients), and ß039/ ß039 (2 patients). After treatment with S-protein or BNT162b2 for 5 days, lysates were analyzed by high performance liquid chromatography (HPLC), for hemoglobin production, and isolated RNA was assayed by RT-qPCR, for detection of globin gene expression. The main conclusions of the results obtained are that SARS-CoV-2 S-protein and BNT162b2 vaccine (a) inhibit fetal hemoglobin (HbF) production by ß-thalassemic ErPCs and (b) inhibit γ-globin mRNA accumulation. In addition, we have performed in silico studies suggesting a high affinity of S-protein to HbF. Remarkably, the binding interaction energy of fetal hemoglobin to S-protein was comparable with that of angiotensin-converting enzyme 2 (ACE2). Our results are consistent with the hypothesis of a relevant impact of SARS-CoV-2 infection and COVID-19 vaccination on the hematopoietic system.


Assuntos
COVID-19 , Eritropoetina , Vacinas , Talassemia beta , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Vacina BNT162 , Talassemia beta/genética , Células Precursoras Eritroides , Vacinas contra COVID-19 , Hemoglobina Fetal , Pandemias , SARS-CoV-2 , Expressão Gênica , Anticorpos Antivirais
5.
Exp Cell Res ; 433(2): 113853, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944576

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causative of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike protein (S-protein) plays an important role in the early phase of SARS-CoV-2 infection through efficient interaction with ACE2. The S-protein is produced by RNA-based COVID-19 vaccines, that were fundamental for the reduction of the viral spread within the population and the clinical severity of COVID-19. However, the S-protein has been hypothesized to be responsible for damaging cells of several tissues and for some important side effects of RNA-based COVID-19 vaccines. Considering the impact of COVID-19 and SARS-CoV-2 infection on the hematopoietic system, the aim of this study was to verify the effect of the BNT162b2 vaccine on erythroid differentiation of the human K562 cell line, that has been in the past intensively studied as a model system mimicking some steps of erythropoiesis. In this context, we focused on hemoglobin production and induced expression of embryo-fetal globin genes, that are among the most important features of K562 erythroid differentiation. We found that the BNT162b2 vaccine suppresses mithramycin-induced erythroid differentiation of K562 cells. Reverse-transcription-qPCR and Western blotting assays demonstrated that suppression of erythroid differentiation was associated with sharp inhibition of the expression of α-globin and γ-globin mRNA accumulation. Inhibition of accumulation of ζ-globin and ε-globin mRNAs was also observed. In addition, we provide in silico studies suggesting a direct interaction between SARS-CoV-2 Spike protein and Hb Portland, that is the major hemoglobin produced by K562 cells. This study thus provides information suggesting the need of great attention on possible alteration of hematopoietic parameters following SARS-CoV-2 infection and/or COVID-19 vaccination.


Assuntos
COVID-19 , Leucemia Eritroblástica Aguda , Humanos , Células K562 , Plicamicina/farmacologia , Plicamicina/metabolismo , Vacinas contra COVID-19/metabolismo , Vacina BNT162 , Leucemia Eritroblástica Aguda/metabolismo , COVID-19/prevenção & controle , COVID-19/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Hemoglobinas/metabolismo , RNA Mensageiro/genética , Células Eritroides/metabolismo
6.
Int J Biol Macromol ; 253(Pt 5): 127088, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774812

RESUMO

The emergence of different coronavirus-related diseases in the 2000's (SARS, MERS, and Covid-19) warrants the need of a complete understanding of the pathological, biological, and biochemical behavior of this class of pathogens. Great attention has been paid to the SARS-CoV-2 Spike protein, and its interaction with the human ACE2 has been thoroughly investigated. Recent findings suggested that the SARS-CoV-2 components may interact with different human proteins, and hemoglobin has very recently been demonstrated as a potential target for the Spike protein. Here we have investigated the interaction between either adult or fetal hemoglobin and the receptor binding domain of the Spike protein at molecular level through advanced molecular dynamics techniques and proposed rational binding modes and energy estimations. Our results agree with biochemical data previously reported in literature. We also demonstrated that co-incubation of pulmonary epithelial cells with hemoglobin strongly reduces the pro-inflammatory effects exerted by the concomitant administration of Spike protein.


Assuntos
COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligação Proteica , Hemoglobinas/metabolismo
7.
Int J Mol Med ; 52(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477130

RESUMO

Since its spread at the beginning of 2020, the coronavirus disease 2019 (COVID­19) pandemic represents one of the major health problems. Despite the approval, testing, and worldwide distribution of anti­severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) vaccines, the development of specific antiviral agents targeting the SARS­CoV­2 life cycle with high efficiency, and/or interfering with the associated 'cytokine storm', is highly required. A recent study, conducted by the authors' group indicated that sulforaphane (SFN) inhibits the expression of IL­6 and IL­8 genes induced by the treatment of IB3­1 bronchial cells with a recombinant spike protein of SARS­CoV­2. In the present study, the ability of SFN to inhibit SARS­CoV­2 replication and the expression of pro­inflammatory genes encoding proteins of the COVID­19 'cytokine storm' was evaluated. SARS­CoV­2 replication was assessed in bronchial epithelial Calu­3 cells. Moreover, SARS­CoV­2 replication and expression of pro­inflammatory genes was evaluated by reverse transcription quantitative droplet digital PCR. The effects on the expression levels of NF­κB were assessed by western blotting. Molecular dynamics simulations of NF­kB/SFN interactions were conducted with Gromacs 2021.1 software under the Martini 2 CG force field. Computational studies indicated that i) SFN was stably bound with the NF­κB monomer; ii) a ternary NF­kB/SFN/DNA complex was formed; iii) the SFN interacted with both the protein and the nucleic acid molecules modifying the binding mode of the latter, and impairing the full interaction between the NF­κB protein and the DNA molecule. This finally stabilized the inactive complex. Molecular studies demonstrated that SFN i) inhibits the SARS­CoV­2 replication in infected Calu­3 cells, decreasing the production of the N­protein coding RNA sequences, ii) decreased NF­κB content in SARS­CoV­2 infected cells and inhibited the expression of NF­kB­dependent IL­1ß and IL­8 gene expression. The data obtained in the present study demonstrated inhibitory effects of SFN on the SARS­CoV­2 life cycle and on the expression levels of the pro­inflammatory genes, sustaining the possible use of SFN in the management of patients with COVID­19.


Assuntos
COVID-19 , Humanos , NF-kappa B/genética , Interleucina-8 , SARS-CoV-2 , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , DNA
8.
Nutrition ; 106: 111891, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459846

RESUMO

OBJECTIVES: The aim of this study was to evaluate the physico-chemical stability of compounded total parenteral nutrition admixtures through peroxidation assay and ultraviolet-visible spectroscopy, high-performance liquid chromatography analysis, nuclear magnetic resonance spectrometry, pH meter, and dynamic light scattering. METHODS: The present study considered parenteral nutrition (PN) admixtures for pediatric and adult patients. The admixtures were characterized by a high content of vitamins and trace elements. They were prepared in one- or two-chamber bags in the hospital pharmacy using an automatic compounding system in a sterile room with laminar airflow at different temperature conditions and light exposure. The experiment setup comprised fat emulsions, lipid-free PN solutions, and single-chamber bags before and after adding vitamins and trace elements. The stability at room temperature (+25°C) and cold temperature (+2-8°C) was assessed by various means. RESULTS: Two-compartment admixtures, single-chamber bags, and all-in-one PN supplemented with vitamins and trace elements are stable up until 35, 9, and 7 d, respectively, when protected from light and stored at +2 to 8°C. Also, the supplemented single-chamber PN was found to be stable up to 48 h when stored at +25°C with light exposure. CONCLUSIONS: The results obtained will help improve PN management at the compounding center and in hospital wards, because they allow for the extension of the validity time frame provided so far by the different formulations and, therefore, therapy scheduling over several days.


Assuntos
Temperatura Baixa , Oligoelementos , Humanos , Criança , Adulto , Nutrição Parenteral/métodos , Soluções de Nutrição Parenteral/química , Vitaminas/análise
9.
Front Pharmacol ; 13: 996871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204236

RESUMO

Increasing antibiotic resistance and the decline in the pharmaceutical industry's investments have amplified the need for novel treatments for multidrug-resistant bacteria. Quorum sensing (QS) inhibitors reduce pathogens' virulence without selective pressure on bacteria and provide an alternative to conventional antibiotic-based therapies. P. aeruginosa uses complex QS signaling to control virulence and biofilm formation. We aimed to identify inhibitors of P. aeruginosa QS acting on acyl-homoserine lactones (AHL)-mediated circuits. Bioluminescence and qRT-PCR assays were employed to screen a library of 81 small phenolic derivatives to reduce AHL-dependent signaling. We identified GM-50 as the most active compound inhibiting the expression of AHL-regulated genes but devoid of cytotoxic activity in human epithelial cells and biocidal effects on bacteria. GM-50 reduces virulence factors such as rhamnolipids, pyocyanin, elastase secretion, and swarming motility in P. aeruginosa PAO1 laboratory strain. By molecular docking, we provide evidence that GM-50 highly interacts with RhlR. GM-50 significantly improved aztreonam-mediated biofilm disruption. Moreover, GM-50 prevents adhesion of PAO1 and inflammatory damage in the human A549 cell line and protects Galleria mellonella from PAO1-mediated killing. GM-50 significantly reduces virulence factors in 20 P. aeruginosa clinical isolates from patients with respiratory tract infections. In conclusion, GM-50 inhibits AHL-signaling, reduces virulence factors, enhances the anti-biofilm activity of aztreonam, and protects G. mellonella larvae from damage induced by P. aeruginosa. Since GM-50 is active on clinical strains, it represents a starting point for identifying and developing new phenolic derivatives acting as QS-inhibitors in P. aeruginosa infections.

10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232826

RESUMO

A small library of new angelicin derivatives was designed and synthesized with the aim of bypassing the side effects of trimethylangelicin (TMA), a promising agent for the treatment of cystic fibrosis. To prevent photoreactions with DNA, hindered substituents were inserted at the 4 and/or 6 positions. Unlike the parent TMA, none of the new derivatives exhibited significant cytotoxicity or mutagenic effects. Among the synthesized compounds, the 4-phenylderivative 12 and the 6-phenylderivative 25 exerted a promising F508del CFTR rescue ability. On these compounds, preliminary in vivo pharmacokinetic (PK) studies were carried out, evidencing a favorable PK profile per se or after incorporation into lipid formulations. Therefore, the selected compounds are good candidates for future extensive investigation to evaluate and develop novel CFTR correctors based on the angelicin structure.


Assuntos
Fibrose Cística , Furocumarinas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA/uso terapêutico , Furocumarinas/química , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Humanos , Lipídeos/uso terapêutico , Mutação
11.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954311

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein belonging to the protein kinase superfamily. It is composed of an extracellular domain, a transmembrane anchoring region and a cytoplasmic region endowed with tyrosine kinase activity. Genetic mutations of EGFR kinase cause higher activity thereby stimulating downstream signaling pathways that, in turn, impact transcription and cell cycle progression. Due to the involvement of mutant EGFR in tumors and inflammatory diseases, in the past decade, several EGFR inhibitory strategies have been extensively studied, either targeting the extracellular domain (through monoclonal antibodies) or the intracellular kinase domain (through ATP-mimic small molecules). Monoclonal antibodies impair the binding to growth factor, the receptor dimerization, and its activation, whereas small molecules block the intracellular catalytic activity. Herein, we describe the development of a novel small molecule, called DSF-102, that interacts with the extracellular domain of EGFR. When tested in vitro in KRAS mutant A549 cells, it impairs EGFR activity by exerting (i) dose-dependent toxicity effects; (ii) a negative regulation of ERK, MAPK p38 and AKT; and (iii) a modulation of the intracellular trafficking and lysosomal degradation of EGFR. Interestingly, DSF-102 exerts its EGFR inhibitory activity without showing interaction with the intracellular kinase domain. Taken together, these findings suggest that DSF-102 is a promising hit compound for the development of a novel class of anti-EGFR compounds, i.e., small molecules able to interact with the extracellular domain of EGFR and useful for overcoming the KRAS-driven resistance to TKI treatment.

12.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743070

RESUMO

From seminal evidence in the early 2000s, the opportunity to drive the specific knockdown of a protein of interest (POI) through pharmacological entities called Proteolysis Targeting Chimeric molecules, or PROTACs, has become a possible therapeutic option with the involvement of these compounds in clinical trials for cancers and autoimmune diseases. The fulcrum of PROTACs pharmacodynamics is to favor the juxtaposition between an E3 ligase activity and the POI, followed by the ubiquitination of the latter and its degradation by the proteasome system. In the face of an apparently modular design of these drugs, being constituted by an E3 ligase binding moiety and a POI-binding moiety connected by a linker, the final structure of an efficient PROTAC degradation enhancer often goes beyond the molecular descriptors known to influence the biological activity, specificity, and pharmacokinetics, requiring a rational improvement through appropriate molecular strategies. Starting from the description of the basic principles underlying the activity of the PROTACs to the evaluation of the strategies for the improvement of pharmacodynamics and pharmacokinetics and rational design, this review examines the molecular elements that have been shown to be effective in allowing the evolution of these compounds from interesting proof of concepts to potential aids of clinical interest.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
J Control Release ; 340: 318-330, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748872

RESUMO

Tyrosine kinase inhibitors (TKIs) represent one of the most advanced class of therapeutics for cancer treatment. Most of them are also cytochrome P450 (CYP) inhibitors and/or substrates thereof. Accordingly, their efficacy and/or toxicity can be affected by CYP-mediated metabolism and by metabolism-derived drug-drug interactions. In order to enhance the therapeutic performance of these drugs, we developed a prodrug (Pro962) of our TKI TK962 specifically designed for liposome loading and pH-controlled release in the tumor. A cholesterol moiety was linked to TK962 through pH-sensitive hydrazone bond for anchoring to the liposome phospholipid bilayer to prevent leakage of the prodrug from the nanocarrier. Bioactivity studies performed on isolated target kinases showed that the prodrug maintains only partial activity against them and the release of TK962 is required. Biopharmaceutical studies carried out with prodrug loaded liposomes showed that the prodrug was firmly associated with the vesicles and the drug release was prevented under blood-mimicking conditions. Conversely, conventional liposome loaded with TK962 readily released the drug. Flow cytometric studies showed that liposomes efficiently provided for intracellular prodrug delivery. The use of the hydrazone linker yielded a pH-controlled drug release, which resulted in about 50% drug release at pH 4 and 5 in 2 h. Prodrug, prodrug loaded liposomes and active lead compound have been tested against cancer cell lines in either 2D or 3D models. The liposome formulation showed higher cytotoxicity than the unformulated lead TK962 in both 2D and 3D models. The stability of prodrug, prodrug loaded liposomes and active lead compound in human serum and against human, mouse, and rat microsomes was also assessed, demonstrating that liposome formulations impair the metabolic reactions and protect the loaded compounds from catabolism. The results suggest that the liposomal formulation of pH releasable TKI prodrugs is a promising strategy to improve the metabolic stability, intracellular cancer cell delivery and release, and in turn the efficacy of this class of anticancer drugs.


Assuntos
Pró-Fármacos , Animais , Preparações de Ação Retardada , Lipossomos , Camundongos , Inibidores de Proteínas Quinases , Ratos , Microambiente Tumoral
14.
Front Microbiol ; 12: 610859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633702

RESUMO

Increasing antibiotic resistance and diminishing pharmaceutical industry investments have increased the need for molecules that can treat infections caused by dangerous pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). Quorum Sensing (QS) is a signaling mechanism that regulates bacterial virulence in pathogens. A report demonstrating that the anti-inflammatory drug Diflunisal reduces MRSA virulence factors' expression prompted us to design, synthesize and test 16 aza-analogs as inhibitors of S. aureus virulence factors controlled by the accessory gene regulator (agr) QS system. At first, we evaluated by qRT-PCR the activity of compounds on rnaIII expression, a QS related gene. Azan-7 was the most active molecule tested and it did not show cytotoxic activity in human cell lines. Moreover, we demonstrated that it did not affect bacterial proliferation. Regulation of MRSA virulence genes by Azan-7 was investigated using qRT-PCR and RNAseq. Azan-7 significantly reduced hla, psmα, hysA, agrA, cap1A, and cap1C gene expression. In silico docking demonstrated that Azan-7 binds the response regulator AgrA. This data was confirmed by electrophoretic mobility shift assay (EMSA) reporting that Azan-7 binding to AgrA protein strongly reduced the AgrA-DNA complex formation at the P3 promoter region involved in the regulation of rnaIII transcription. Azan-7 inhibited MRSA-mediated haemolysis, reduced survival of the pathogen at low pH levels, and increased macrophage killing. In addition, Azan-7 enhanced MRSA susceptibility to clindamycin both in planktonic growth and biofilm. Azan-7 did not induce resistance over 10 days in culture. It was equally active against all the AgrA MRSA subtypes encountered among clinical isolates, but it was not active against Staphylococcus epidermidis, although the AgrA proteins show an approximate 80% homology. These results demonstrate that Azan-7 inhibits the expression of MRSA virulence factors by interfering in the QS and synergizes MRSA biofilm with clindamycin, indicating the compound as a promising candidate for the treatment of MRSA infections.

15.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572353

RESUMO

The cholecystokinin-2 receptor (CCK-2R) is overexpressed in several human cancers but displays limited expression in normal tissues. For this reason, it is a suitable target for developing specific radiotracers. In this study, a nastorazepide-based ligand functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator (IP-001) was synthesized and labelled with indium-111. The radiolabeling process yielded >95% with a molar activity of 10 MBq/nmol and a radiochemical purity of >98%. Stability studies have shown a remarkable resistance to degradation (>93%) within 120 h of incubation in human blood. The in vitro uptake of [111In]In-IP-001 was assessed for up to 24 h on a high CCK-2R-expressing tumor cell line (A549) showing maximal accumulation after 4 h of incubation. Biodistribution and single photon emission tomography (SPECT)/CT imaging were evaluated on BALB/c nude mice bearing A549 xenograft tumors. Implanted tumors could be clearly visualized after only 4 h post injection (2.36 ± 0.26% ID/cc), although a high amount of radiotracer was also found in the liver, kidneys, and spleen (8.25 ± 2.21%, 6.99 ± 0.97%, and 3.88 ± 0.36% ID/cc, respectively). Clearance was slow by both hepatobiliary and renal excretion. Tumor retention persisted for up to 24 h, with the tumor to organs ratio increasing over-time and ending with a tumor uptake (1.52 ± 0.71% ID/cc) comparable to liver and kidneys.


Assuntos
Benzodiazepinas/química , Radioisótopos de Índio/farmacocinética , Neoplasias Pulmonares/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Receptor de Colecistocinina B/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Radioisótopos de Índio/administração & dosagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Radiofarmacêuticos/administração & dosagem , Receptor de Colecistocinina B/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancers (Basel) ; 13(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401428

RESUMO

Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.

17.
Pharmacol Res ; 160: 105196, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32919042

RESUMO

SAM50, a 7-8 nm diameter ß-barrel channel of the mitochondrial outer membrane, is the central channel of the sorting and assembly machinery (SAM) complex involved in the biogenesis of ß-barrel proteins. Interestingly, SAM50 is not known to have channel translocase activity; however, we have recently found that this channel is necessary and sufficient for mitochondrial entry of cytotoxic proteases. Cytotoxic lymphocytes eliminate cells that pose potential hazards, such as virus- and bacteria-infected cells as well as cancer cells. They induce cell death following the delivery of granzyme cytotoxic proteases into the cytosol of the target cell. Although granzyme A and granzyme B (GA and GB), the best characterized of the five human granzymes, trigger very distinct apoptotic cascades, they share the ability to directly target the mitochondria. GA and GB do not have a mitochondrial targeting signal, yet they enter the target cell mitochondria to disrupt respiratory chain complex I and induce mitochondrial reactive oxygen species (ROS)-dependent cell death. We found that granzyme mitochondrial entry requires SAM50 and the translocase of the inner membrane 22 (TIM22). Preventing granzymes' mitochondrial entry compromises their cytotoxicity, indicating that this event is unexpectedly an important step for cell death. Although mitochondria are best known for their roles in cell metabolism and energy conversion, these double-membrane organelles are also involved in Ca2+ homeostasis, metabolite transport, cell cycle regulation, cell signaling, differentiation, stress response, redox homeostasis, aging, and cell death. This multiplicity of functions is matched with the complexity and plasticity of the mitochondrial proteome as well as the organelle's morphological and structural versatility. Indeed, mitochondria are extremely dynamic and undergo fusion and fission events in response to diverse cellular cues. In humans, there are 1500 different mitochondrial proteins, the vast majority of which are encoded in the nuclear genome and translated by cytosolic ribosomes, after which they must be imported and properly addressed to the right mitochondrial compartment. To this end, mitochondria are equipped with a very sophisticated and highly specific protein import machinery. The latter is centered on translocase complexes embedded in the outer and inner mitochondrial membranes working along five different import pathways. We will briefly describe these import pathways to put into perspective our finding regarding the ability of granzymes to enter the mitochondria.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Humanos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Peptídeo Hidrolases/toxicidade , Linfócitos T Citotóxicos
18.
Appl Radiat Isot ; 164: 109258, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819502

RESUMO

Research in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro). Such technique foresees the employment of the SPES ISOL facility to produce isobarically pure Radioactive Ion Beams (RIBs), obtained thanks to electromagnetic mass separation and collected on appropriate substrates. The latter are successively recovered and dissolved, allowing thus the chemical separation and harvesting of the nuclides of interest, free from any isotopic contaminant. Although ISOLPHARM can be potentially employed for most of the routinely used medical radioisotopes, its innovation potential is better expressed considering its capability to provide carrier free unconventional nuclides, difficult to produce with state-of-art techniques, such as 111Ag, a ß- emitter potentially interesting for therapeutic applications. Thus, in the framework of ISOLPHARM, INFN supported a two-years experiment, called ISOLPHARM_Ag, aimed at evaluating the feasibility of the production of a111Ag labelled radiopharmaceutical. The ISOL production yields are estimated by computing intensive Monte Carlo codes, that require an appropriate custom Information Technology infrastructure. The presented work is focused on the first part of the production chain including the capability to extract, ionize, and collect stable Ag beams with SPES technologies. MC calculations were used to estimate the expected 111Ag in-target yields, whereas experiments with stable Ag were performed to test the ionization, transport and collection of Ag beams.


Assuntos
Compostos Radiofarmacêuticos/síntese química , Prata/química , Desenvolvimento de Medicamentos , Método de Monte Carlo , Aceleradores de Partículas
19.
Anal Bioanal Chem ; 411(29): 7699-7707, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31300855

RESUMO

Recent studies have identified and characterized a novel putative transcriptional repressor site in a 5' untranslated region of the Aγ-globin gene that interacts with the Ly-1 antibody reactive clone (LYAR) protein. LYAR binds the 5'-GGTTAT-3' site of the Aγ-globin gene, and this molecular interaction causes repression of gene transcription. In ß-thalassemia patients, a polymorphism has been demonstrated (the rs368698783 G>A polymorphism) within the 5'-GGTTAT-3' LYAR-binding site of the Aγ-globin gene. The major results gathered from surface plasmon resonance based biospecific interaction analysis (SPR-BIA) studies (using crude nuclear extracts, LYAR-enriched lysates, and recombinant LYAR) support the concept that the rs368698783 G>A polymorphism of the Aγ-globin gene attenuates the efficiency of LYAR binding to the LYAR-binding site. This conclusion was fully confirmed by a molecular docking analysis. This might lead to a very important difference in erythroid cells from ß-thalassemia patients in respect to basal and induced levels of production of fetal hemoglobin. The novelty of the reported SPR-BIA method is that it allows the characterization and validation of the altered binding of a key nuclear factor (LYAR) to mutated LYAR-binding sites. These results, in addition to theoretical implications, should be considered of interest in applied pharmacology studies as a basis for the screening of drugs able to inhibit LYAR-DNA interactions. This might lead to the identification of molecules facilitating induced increase of γ-globin gene expression and fetal hemoglobin production in erythroid cells, which is associated with possible reduction of the clinical severity of the ß-thalassemia phenotype. Graphical abstract.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Polimorfismo Genético , Ressonância de Plasmônio de Superfície/métodos , Talassemia beta/genética , gama-Globinas/genética , Sítios de Ligação , Células HEK293 , Humanos , Células K562 , Simulação de Acoplamento Molecular , Ligação Proteica , gama-Globinas/metabolismo
20.
Eur J Med Chem ; 172: 143-153, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978559

RESUMO

The role of cyclin-dependent kinases (CDKs) in regulating the transition of cell cycle steps makes this class of enzymes a suitable target for cancer therapy. Three different generations of CDKs inhibitors have been developed so far. Third-generation compounds (i.e. selective CDK4/6 inhibitors) are the most promising ones, due to their limited toxicity and high in vivo activity. To date, three compounds have entered the therapy, namely Palbociclib, Ribociclib and Abemaciclib. Herein we review the medicinal chemistry aspects of these drugs, with some references to very similar analogues that have been published.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piridinas/farmacologia , Aminopiridinas/química , Benzimidazóis/química , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperazinas/química , Inibidores de Proteínas Quinases/química , Purinas/química , Piridinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...